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Petaflop: 
Definition, 1 quadrillion (“1” followed by 15 
zeros) floating point operations per second. 
Usage, Metric for supercomputer perfor-
mance.

The petaflop barrier was broken on 26 May 
2008 by IBM’s Roadrunner machine at Los 
Alamos National Laboratory with a speed 
of 1.026 petaflops. As of 16 December 2009, 
the world’s fastest supercomputer is the Cray 
XT5 Jaguar machine at Oak Ridge National 
Laboratory, which has a measured speed of 
1.75 petaflops and a theoretical top speed of 
2.3 petaflops (1).

Translation: A whole lot of computing 
power . . .

Biomedical research today faces a critical 
dilemma. As huge amounts of detailed in-
formation become available for increasingly 
finer levels of biological mechanisms, it has 
become more and more difficult to effec-
tively translate basic mechanistic knowledge 
into clinically effective therapeutics (2). The 
daunting challenge of translating mecha-
nistic knowledge across scales of biological 
organization is a critical step in the devel-
opment and evaluation of interventions for 
complex diseases such as sepsis, cancer, obe-
sity, and autoimmune conditions. Sophisti-
cated analytical methods aid in unraveling 
complexity by identifying patterns of rela-
tionships between increasingly dense data 
sets. The growing reliance and emphasis on 

these methods raises the following question: 
Do researchers believe that, with enough 
data, correlation can be conflated with cau-
sality, and thus high-volume data analysis 
represents the future of science? Or are we at 
the point in the evolution of science where 
there simply is no better option? I propose 
that the currently perceived condition re-
sults from imbalances in the iterative loop of 
the scientific process, arising from differen-
tial advances in some aspects of the process 
versus others. A diagnostic approach to the 
translational dilemma can aid in the recog-
nition of where deficits lie and guide the di-
rection of future efforts. The results of such 
a diagnosis are presented below as a series of 
assertions regarding biomedical science, fol-
lowed by a proposed approach for address-
ing the translational challenge within the 
context of the scientific method—the cycle 
of observation, experimentation, and inter-
pretation that results in a set of predictive 
beliefs that constitute scientific knowledge.

THE ASSERTIONS
Assertion 1: Biological knowledge will always 
be incomplete. The goal of biology is not 
completeness of description or the striv-
ing for an ontological truth, but rather suf-
ficiency of explanation. Sufficiency implies 
a contextual goal: How much do I need to 
know to accomplish what I want to do? The 
modeling and simulation community calls 
this “defining the experimental frame”: a 
specification of the conditions under which 
the system is observed and experimented 
with, thus determining constraints on what 

can be interpreted from a result (3). Suffi-
ciency also implies “trust” on the part of the 
researcher, given a particular experimen-
tal frame: How do I establish trust in the 
“truth” (albeit limited and constrained) of 
my knowledge? This point deserves empha-
sis, because it means that dealing with the 
incompleteness of knowledge is something 
we already do all the time! The need to deal 
with incompleteness through the determina-
tion of sufficiency is intrinsic to any research 
endeavor, but particularly so in translational 
research, which has as its eventual goal the 
improvement of public health through the 
implementation of acquired and interpreted 
knowledge that can be trusted.

Assertion 2: The ability to control a 
pathophysiological process requires an infer-
ence of mechanistic causality with respect to 
the biological process being targeted. This is 
a seemingly obvious but critical fact: If we 
hope to effectively intervene in and exercise 
control over a system, we must believe that 
the system operates on mechanisms that 
represent cause and effect. Imputed mecha-
nisms of causality exist within, and are spe-
cific to, a defined experimental frame. Es-
tablishing trust in hypothesized causality is 
the goal of the scientific method. As a brief 
review and reference point, a schematic of 
the iterative cycle of science is seen in Fig. 
1. The informed evaluation of any proposed 
intervention must incorporate some hy-
pothesis of mechanistic causality in the sys-
tem being targeted.

Assertion 3: The current translational di-
lemma results from an imbalance in the scien-
tific cycle. Advances in technology have led 
to a significant increase in the flow through 
the scientific cycle, leading to potential 
bottlenecks: More data are being acquired, 
those data need to be mined and interpreted 
to suggest hypotheses, and those hypotheses 
need to be evaluated. Areas of ongoing re-
search and development in bioinformatics 
can be linked to attempts to address these 
bottlenecks: data mining, curation, and 
sharing for high-throughput observations; 
data integration, pattern determination, and 
automated inference for hypothesis genera-
tion; and modeling and simulation for hy-
pothesis testing (4, 5). 

However, advances in technology and 
methodology do not necessarily enhance 
each arm of the scientific cycle equally and 
concurrently. Specifically, I propose that 
the development of methods for generating 
and capturing data (the observation step) 
and identifying patterns in those data (the 

H I G H - P E R F O R M A N C E  C O M P U T I N G

Closing the Scientific Loop:  
Bridging Correlation and Causality  
in the Petaflop Age
Gary An

E-mail: docgca@gmail.com

Published 21 July 2010;  Volume 2 Issue 41 41ps34

Section of General Surgery, Department of Surgery, 
University of Chicago, Chicago, IL 60637, USA.

Advances in computing capability offer the biomedical research community the prospect 
of creating simulations at a previously unimaginable scale. A diagnostic analysis of the 
underpinnings of the translational dilemma suggests that the current high-throughput, 
data-rich research environment has led to an imbalance in the relationship between deter-
minations of correlation and the evaluation of causality. Here I describe the use of high-
performance computing technologies to facilitate high-throughput hypothesis evaluation 
combined with an evolutionary paradigm for the advancement of scientific knowledge. 
This combination provides a roadmap for closing the scientific loop between correlation 
and causality, a necessary step if translational endeavors are to succeed.

 o
n 

Ju
ly

 2
2,

 2
01

0
st

m
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

http://stm.sciencemag.org/


P E R S P E C T I V E

www.ScienceTranslationalMedicine.org  21 July 2010  Vol 2 Issue 41 41ps34    2

hypothesis-generation step) 
have outstripped the capacity 
to evaluate hypotheses derived 
from such correlative analyses. 
Under the traditional scientific 
method, mechanistic hypoth-
eses derived from relationship 
patterns extracted from high-
throughput data analysis would 
all be evaluated by experiments 
to generate new data to deter-
mine whether the suggested cor-
relative patterns could be trusted 
as potential causal mechanisms. 
Unfortunately, the complexity 
and dimensionality (in terms of 
multiple factors and variables) 
of current biomedical problems 
preclude this approach. There-
fore, an imbalance exists in our 
ability to address the various 
process bottlenecks in the cur-
rent high-throughput environ-
ment, in which emphasis on the 
initial acquisition, management, 
and interpretation of data has 
superseded attention to evaluat-
ing the transition from correla-
tion to causality (Fig. 2). 

Although such an imbalance may be a 
necessary and natural component of the 
overall evolution of science (that is, it is 
reasonable to suppose that developments 
in data acquisition and management would 
precede augmentation of hypothesis test-
ing), there is a potential danger that scien-
tists begin to rely on the most sophisticated 
tools available at the expense of reestablish-
ing balance in the cycle, leading to gridlock 
and stagnation [the current translational di-
lemma? (2)]. Therefore, the current state of 
affairs can be described as such: If a sophisti-
cated data-mining, pattern-identification al-
gorithm was used to identify the correlation, 
then attempting to reconstruct a traditional 
experiment to represent the system and test 
the hypothesis is an intractable challenge. 
However, data-driven computational analy-
sis cannot be used to evaluate mechanistic 
causality in a hypothesis. Although correla-
tive patterns may provide the foundational 
basis of causal hypothesis development, the 
scientific method mandates an additional 
step: experimental evaluation of causality. If 
the hypothesis evaluation/testing bottleneck 
evident in Fig. 2 results from the reliance 
on traditional stepwise experimental pro-
cedures (one experiment, one variable, one 
evaluation of causality), then it stands to 

reason that the goal of scientific method de-
velopment would be an attempt to increase 
the throughput potential of hypothesis 
evaluation. Computational advances, both 
in modeling and simulation methods and in 
hardware capability, represent the solution.

Assertion 4: High-throughput multiscale 
hypothesis evaluation requires computation-
al representation of mechanistic hypotheses 
(instantiating thought experiments). All re-
searchers construct mental models of the 
intellectual basis of their research, often rep-
resented in flow diagrams of the type so ubiq-
uitous in biomedical papers. However, these 
diagrams are static and thus do not allow one 
to observe the consequences of relationships 
among components and mechanisms. The 
process of bringing these static diagrams to 
life has been termed executable biology (6), 
dynamic knowledge representation (7), or 
synthetic modeling and simulation (8). The 
current proposal emphasizes the develop-
ment of high-throughput hypothesis test-
ing/evaluation: the facilitation of the devel-
opment of many models/simulations that 
represent a diversity of candidate hypoth-
eses via the “democratization” of simulation 
construction. This will produce a distributed 
approach to discovering and testing what 
we know, building on those hypotheses suf-

ficient trust in understanding, 
and then moving toward inter-
vention development. Thus, the 
target of sufficiency is raised 
again: At what point is a simula-
tion sufficient for high-through-
put hypothesis evaluation?

Fortunately, biological sys-
tems exhibit robustness and dy-
namic stability in a modular and 
multiscale fashion, where the 
macro-level behaviors are fairly 
resistant to micro-level fluctua-
tions of underlying mechanisms: 
Even patients with chronic dis-
eases function relatively normal-
ly with respect to the majority of 
their metabolic and homeostatic 
mechanisms, and the diseases 
themselves represent relatively 
stable dynamic systems. There-
fore, assessments of macro-
level behavior can be qualita-
tively evaluated with the goal 
of establishing face validity of a 
trans-scale mental model. Face 
validity asks that the simulation 
behave reasonably and be suffi-
ciently accurate (9). Simulation 

science has established a sequence of tiers of 
validation that can be related to the needs of 
translational research (3, 9–12). These tiers 
represent steps toward increasing the resolu-
tion and predictive capability of simulations. 
Face validity is the first step. For biomedical 
research, this sequence corresponds to the 
movement from the discovery phase of sci-
ence to the engineering phase of intervention 
development and testing. The key point is 
that you cannot skip steps; requiring a simu-
lation or hypothesis to pass through the vari-
ous stages of testing reduces the likelihood of 
being on the wrong track. Given the intrin-
sic incompleteness of biological knowledge, 
the research community’s needs in terms 
of developing viable translational strategies 
should be primarily focused on the earliest 
stages of simulation and hypothesis evalua-
tion: establishing face validity. The challenge 
is that it is virtually impossible to know, a 
priori, which micro-level mechanisms will 
be significant at the macro level, even given 
the standard of face validity.

Emphasis on the goal of sufficiency in 
the translational endeavor provides some 
guiding principles: (i) The level of detail 
in a simulation or model is guided by the 
planned intervention; the level of simula-
tion resolution must be at least as detailed 

Fig. 1. Discovery channel. Within the iterative loop of the scientific pro-
cess, data are produced by either observation or experiment. These data 
are then analyzed to detect putative relationships, which are used to form 
mechanistic hypotheses. This last step converts data into knowledge 
through interpretation. However, because correlation does not equal 
causality, the hypothesis must be subjected to an experiment, which is 
then evaluated statistically to establish trust in the causality represented 
within the hypothesis. 

C
RE

D
IT

: C
. B

IC
K

EL
/S

C
IE

N
C

E 
TR

A
N

SL
AT

IO
N

A
L 

M
ED

IC
IN

E

 o
n 

Ju
ly

 2
2,

 2
01

0
st

m
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

http://stm.sciencemag.org/


P E R S P E C T I V E

www.ScienceTranslationalMedicine.org  21 July 2010  Vol 2 Issue 41 41ps34    3

as the proposed mechanism of 
the planned intervention. (ii) 
Validation checks should be 
sought for each simulation scale 
of resolution. These are directed 
at falsification, to eliminate hy-
potheses that are clearly wrong 
and continue with hypotheses 
that are plausible; the goal is suf-
ficiency, not “truth.” And (iii) in-
formation from productive falsi-
fication—the identification and 
explicit description of the reason 
for failure—is used to improve 
the simulation (heuristics). The 
high-throughput approach sug-
gests that this process should 
be taking place in parallel, with 
multiple researchers, each with 
multiple hypotheses, exploring 
potential solutions. This is “mas-
sive induction” implemented at 
a community-wide level, occur-
ring at multiple levels and with-
in multiple modules represent-
ing different but interoperable 
defined experimental frames, 
matching the current structure 
of both biological systems and 
the scientific research commu-
nity (13). At first, this prospect appears to 
be overwhelming, in terms of both imple-
mentation and analysis. However, develop-
ments in computing technology are moving 
toward providing this capability.

Assertion 5: Developing the capacity for 
computationally assisted, high-throughput hy-
pothesis testing requires advances in methods 
to use high-performance computing (HPC) 
systems. As noted in the preamble, comput-
ing capability has reached previously in-
conceivable levels of sophistication. These 
advances in computational capability have 
historically followed two paths that are now 
merging: increasing individual computer 
power and increasing computer connectiv-
ity. The most powerful supercomputers are 
aggregates of millions of relatively simple 
processors (14, 15), and distributed systems 
[such as grid (16) and cloud computing (17)] 
are increasing in use and availability. A high-
throughput hypothesis evaluation strategy 
for translational research needs to develop 
methodologies to use both technological av-
enues. For the purposes of this discussion, let 
us accept that there is already recognition of 
the importance and benefits of modeling and 
simulation (5–8) and also that many of these 
methods are relatively mature and capable, at 

least within defined-use cases. Let us also ac-
cept that there will be ongoing development 
in the refinement and expansion of methods. 
What trajectories of method development, 
then, are necessary to achieve the goal of 
high-throughput hypothesis evaluation? I 
propose three such primary areas: (i) facili-
tating the transfer of existing knowledge into 
simulation format, (ii) transfer of simulation 
types onto HPC platforms, and (iii) augment-
ing the ability to evaluate and interpret large-
scale simulations and their output.

In terms of knowledge transfer, the experi-
ence of developing and managing bio-ontol-
ogies by the National Center for Biomedical 
Ontology (NCBO) (18) is particularly illumi-
nating. Bio-ontology development follows a 
distributed paradigm, wherein multiple re-
searchers construct specific ontologies, often 
tied to a particular domain and/or use. The 
NCBO provides a curated repository for these 
ontologies; use by the community drives the 
further refinement of the most-used ontolo-
gies. As a result, community-wide expertise is 
marshaled toward the advancement of meth-
ods for structured knowledge. Structured 
knowledge, in turn, provides an avenue into 
the modeling and simulation community. 
The conversion from structured knowledge 

in current bio-ontologies to ex-
ecutable knowledge has already 
begun using a variety of simu-
lation and modeling methods 
(19–21).

Substantial advancement in 
the capability to scale up the de-
tail and resolution of the simu-
lations must occur, and the use 
of HPC will play a critical role 
(3, 9–12, 22). With petaflop 
computing capability, simula-
tions of previously inconceiv-
able computational overhead 
now become feasible. This is 
vital, because the translation of 
knowledge regarding molecu-
lar interventions to the clinical 
context will require multiscale 
integration of hosts of simula-
tion modules of increasing de-
tail. Translational intervention 
engineering will require mov-
ing beyond abstract low-reso-
lution models to high-fidelity 
simulations consistent with 
the processes described in the 
modeling and simulation arena 
(3, 10, 11).

It is inevitable that as simu-
lations become more and more complex, 
analyzing their behavior becomes a com-
putationally intensive task in and of itself; 
therefore, development must also occur in 
this area. However, there is an important dif-
ference between managing the complexity of 
a simulation versus the complexity of real-
world biology: The simulation is constructed 
to be as transparent as is feasible. There are 
tools available for the evaluation of formally 
specified computer programs. Formal model 
checking (23), functional testing (24), and 
machine learning methods in the analysis 
of simulated hypotheses greatly increase 
our ability to determine where the gaps in 
knowledge and understanding may lie.

AN EVOLUTIONARY PARADIGM FOR 
TRANSLATIONAL SCIENCE IN THE 
PETAFLOP AGE
Currently, “data” is king, but data alone are 
not knowledge, and science is ultimately the 
advancement of knowledge. Highly com-
plex, data-dense, multiscale problems call 
for a similarly high-dimensional solution; 
it should be noted that the population-level 
dimension of the research community is 
an integral aspect to this approach. Con-
sider the example depicted in Fig. 3. Min-

Fig. 2. Out of sync. This diagram depicts the current imbalance in the scien-
tific process, in which high-throughput data collection has vastly increased 
the amount of existing data. These data are then processed using sophisti-
cated correlation-establishing methods as a substitute for human insight. 
This leads to a large number of candidate hypotheses, and researchers 
need to exercise choice in selecting the components of their hypothesis. 
However, the causality inferred in these hypotheses cannot be tested suffi-
ciently using traditional methods. This situation results in a bottleneck (two 
small arrows) in the scientific process at the point of causality evaluation.
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ing of genomic data in a population of sep-
sis patients identifies n genes that are altered 
during a 28-day hospital course; network 
analysis demonstrates a network structure 
consisting of x primary, more highly con-
nected nodes (“scale-free” topology); then 
metabolomic, mRNA, and cytokine samples 
identify approximately y to z compounds as-
sociated with each primary-node gene, pro-
viding candidate regulatory, signaling, and 
metabolic pathway structures. However, the 
set of possible hypothetical causal configu-
rations is immense. So what are plausible 
causal pathway structures? High-through-
put hypothesis evaluation implemented on 
HPCs allows the instantiation, in parallel, 
of multiple hypotheses and identifies the 
causal structures that can (i) recapitulate the 
original data and then (ii) be used as virtual 

experimental platforms to evaluate new ex-
periments. Furthermore, different pathways 
predominate in different cell types (inflam-
matory, endothelial, and epithelial cells, 
etc.), and these cell types are organized into 
different tissues and organs, all of which 
have specific behaviors in particular states 
of disease (shock, multiple-organ failure 
and recovery, etc.). As multiscale hypoth-
eses arise to describe the various contribu-
tions and configurations of these factors 
and components, the petaflop capability of 
HPC platforms offers the possibility that 
these multiscale hypotheses can be instan-
tiated with sufficient execution speed and 
diversity, so that a population of virtual ex-
periments can be practically generated and 
performed, ranging from molecular biology 
to clinical trials.

This process is not confined to a single 
researcher or lab; rather, there is a com-
munity-level repository of this knowledge 
and these models, where different labs have 
simulation modules of either competing or 
complementary hypotheses and areas of 
focus. Collaborations consist of using and 
building on existing modules in the com-
munity repository. Some of these modules 
will remain relatively abstract and be cy-
cled back for the task of discovery; others 
will be refined toward engineering-grade 
simulations for intervention development. 
Modules and models that are deemed use-
ful by sufficient numbers of the commu-
nity will persist; those that are not will fall 
by the wayside. High-throughput flow of 
new data feeds the scientific cycle, leading 
to continued and iterative modification of 

Fig. 3. Good causes. HPC can be used to augment high-throughput causality representation and testing. (From left to right, following arrows) Data 
mining and correlation identification lead to candidate relationship structures (patterns). HPC allows for parallel testing of multiple candidate causal 
hypotheses; plausible models are kept, nonplausible ones discarded. Concurrently, HPC allows for the instantiation of multiscale models (for example, 
of human disease physiology) constructed from modular subsystem models (for example, clinical chemistry parameters, gene and genome sequenc-
ing, and various kinds of imaging data). These research endeavors exist and function within a knowledge landscape that houses input from diverse 
scientific communities; HPC capabilities facilitate the underlying integrated repository framework: the “community knowledge landscape.”
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the community-level knowledge landscape. 
All the necessary components of evolution 
are present: diversity, varying fitness, selec-
tion, and reproductive success (manifested 
as persistence). Diversity in science can be 
seen in community knowledge represented 
by the multiplicity of researchers’ hypoth-
eses. The fitness of a hypothesis is based on 
its ability to stand the scrutiny of experi-
mental validation. Surviving hypotheses 
are those that are sufficient to explain their 
current data environment; if the data envi-
ronment shifts, then the determination of 
fitness changes, and new hypotheses arise 
to populate the knowledge landscape. Tying 
the process of science to a theory—evolu-
tion—that is as fundamental and robust as 
exists in science would seem to be a favor-
able strategy.

Computational augmentation of cau-
sality evaluation increases the dimension-
ality of the testing and selection capacity 
and represents a high-throughput means 
of breaking the bottleneck in the current 
data- and correlation-dependent scientific 
environment. If the scientific method is 
to be preserved in today’s complex, data-
dense, multiscale environment, the strategy 
presented in this article must eventually 
occur. The advent of the petaflop age offers 
the promise that such a strategy is possible 
if given priority.
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